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Abstract A new force field has been designed to imple-
ment the calculation of Coulomb interactions with fluc-
tuating atomic charges. The charges are calculated by
use of a semi-empirical quantum chemical method –
bond polarization theory (BPT). The BPT method estab-
lishes a direct proportionality between molecular proper-
ties, for instance atomic charges or chemical shifts, and
bond polarization energies. These energies are calculated
from bond orbitals that are constructed for every bond of
the force field. Thus the charges depend on the three-
dimensional geometry of the molecular system, and it is
possible to include all mutual polarizations in the term
for electrostatic interaction. The primary goal of this new
force field is better description of the intermolecular in-
teractions of molecular systems. No special term within
the force field is applied for the description of hydrogen
bonds. The inclusion of the polarization effect over the
whole system is one of the most important advantages of
the method in respect of force fields that divide the mo-
lecular system into molecular mechanics and quantum
chemical regions.

The force field was tested by being used to describe
the structure and interaction energies of several small
molecular systems (26 hydrogen-bonded dimers) from a
web-based ab initio data collection by Halgren. The re-
sults show an overall RMS deviation of 2.5 kcal mol–1

for the interaction energies, 0.06 Å for the hydrogen
bond distances (X...Z) and 20.1° for the X-H...Z angles.
This is comparable with most existing force fields. The
results were obtained with the original parametrization
of Halgren for the van der Waals interactions without
any fine tuning of the interaction parameters.

Additional interaction energies and structures of se-
lected DNA/RNA base pairs (see Figure) were studied.
The geometries of hydrogen bonds, in particular, are re-
produced satisfactorily – after geometry optimization the
distances differ on average by 0.06 Å and in the angles
by 6° from the ab initio Hartree–Fock results including
correlation.
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interactions

Introduction

Description of the intermolecular interactions with the
help of potential functions enables the description of
how reactions proceed in cells or how pharmaceuticals
interact with proteins in a living body. Detailed informa-
tion is needed to enable understanding of biochemical
processes, but we can only use very simple models to
obtain an idea of how the compounds interact. Force
fields and molecular dynamics (MD) simulations give us
the possibility of simulating interactions of large molec-
ular systems with relatively simple potential energy
functions.

If a new component, e.g. the BPT charge calculation,
is introduced into a molecular mechanics force field, the
classical part should be as simple as possible with a min-
imum number of parameters. Otherwise it seems impos-
sible to fix the problems introduced by the quantum
chemical part. We therefore developed our method as a
universal force field with a small number of parameters.
The parametrization of the different parts should be as
independent as possible.

Many problems in force field calculations arise from
the calculation of Coulomb interactions with fixed
charges neglecting all mutual polarizations. Most of the
commonly used force fields work with fixed charges
CHARMM [1], AMBER [2], GROMOS [3], OPLS [4],
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and MMFF [5], or adjustable dipoles MM3 (all ele-
ments) [6]. These charges are parameters adjusted to
give reasonable interaction energies in structures not too
far from equilibrium geometry. Atomic charges are often
exaggerated to account for the energy contributions from
polarization, because in classical force fields electric po-
larization is excluded. Moreover, special terms are some-
times included for the proper description of hydrogen
bonds. However, the current trend seems to be that force
fields are moving away from specialized potentials for
the description of hydrogen bonds, and instead using the
already existing van der Waals and Coulomb terms.

Recently a polarizable force field fitted to ab initio
data was published by Friesner et al. [7] and also applied
to selected amino acids [8]. Using the fluctuating charge
(FQ) model of Berne et al. [9] the method is based on
atomic charges from the electronegativity equalization
method [10, 11]. A great advantage of this method, com-
pared with models based on fixed charges is that the
charges depend on the topology of the molecule – the
two dimensional structure. Other force fields have been
published which apply the FQ model to focus on very
special tasks – description of hydrocarbons [12], organic
molecules [13], or water [14].

The COSMOS force field presented in this paper in-
cludes the semi-empirical charge calculation based on
bond polarization theory (BPT) [15, 16]. The most impor-
tant advantage of BPT is that the atomic charges depend
on the three-dimensional structure of the molecule. The
algorithm is fast enough for molecular mechanics calcu-
lations, because only one matrix inversion is necessary
(the matrix has the dimension of the number of atoms) to
calculate the charges. Most computing time is consumed
by the integrals needed for the matrix elements.

In the first section a short description of the potential
functions is given. In the second some applications of
the force field are presented – internal geometries of a
broad variety of small molecules, interactions and do-
nor–acceptor behavior of hydrogen-bonded dimer struc-
tures, and the interaction energies and geometries of se-
lected DNA/RNA base pairs.

The COSMOS force field

The COSMOS (COmputer Simulation of MOlecular
Structures) force field was designed to fulfil the follow-
ing requirements:

1. The number of empirical parameters should be as lim-
ited as possible.

2. The parameters of the different energy contributions
should be independent; in particular the intramolecu-
lar terms should be independent of the intermolecular
terms.

3. The force field should be universally useful for most
common compounds.

The second point, in particular, should be emphasized,
because the semi-empirically calculated atomic charges

fluctuate with changing molecular structure. A correct
calculation of Coulomb interactions with fluctuating
charges can be accomplished only if the electrostatic en-
ergy is independent of the parametrization of other ener-
gy contributions. Only independent parametrization can
guarantee that parts of the force fields can be re-parame-
trized without changing the rest of the force field.

Special attention was paid to the intermolecular interac-
tions. An improved description of polar effects yields more
reliable hydrogen-bond energies. Special terms for the de-
scription of hydrogen-bond interactions are not necessary.

Bond energy

The bond-stretching energy is associated with deforma-
tion of a bond from its equilibrium length r0. For the de-
scription of the bond energy we follow some ideas of
Smith [17] applied in his PIMM force field. The bond
energy between two atoms i and j is calculated using the
well known potential:

(1)

where rij refers to the actual distance between atoms i
and j, and kij(rij) is the force constant. The force constant
is calculated depending on the actual bond distance rij as
described by an inverse power series [18]:

(2)

The parameters C2, C4, and C6 and the equilibrium 
distances r0

ij for saturated bonds are taken from the 
literature [17] (see also Ref. [19]). This non-harmonic
potential function is used for single bonds between the
atoms C, N, O, S, Cl, and F. A fixed value of kHj
(1007 kcal mol–1 Å–1) was introduced for the bonds to
hydrogen.

Although we followed PIMM [17] in defining poten-
tial and parameters for the force constants and the 
equilibrium distances for saturated bonds, another ap-
proach was used to describe the equilibrium distances 
r0

ij for unsaturated bonds and missing parameters of
Ref. [17]. The parametrization of the equilibrium dis-
tances for unsaturated bonds is more complicated be-
cause the equilibrium distances depend on the valence of
the bond. The valence of conjugated double bonds may
range from 1 to 2. This valence depends on the distribu-
tion of π-electrons within the system of conjugated 
π-bonds and also on the planarity of this π-system.

One possible means of solving this problem is para-
metrization of the many types of conjugated π-bonds.
This option is used in many force fields but many param-
eters are needed and it is a complicated task to include
“all the special cases”, that can occur. Thus, non-planar
π-systems, like biphenyl, are “problem molecules” for
some force fields.

A second way is to solve the Hückel Hamiltonian as
implemented within MMPI [17] or to perform an itera-
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tive PPP calculation cycle as in MMP2 or MMP3 [20].
Initially this solution seems attractive and quite general.
Problems show up if this procedure must work together
with the rest of the force field:

1. a π-bond order for the planar π-system is needed for
dihedral forces of conjugated bonds

2. in large molecules there can be several more or less
non-overlapping π-systems, because of steric reasons
(non-planarity of the π-system); and

3. when the whole molecule is treated as a single π-
system, we arrive at very large Hamiltonian matrices.

We propose a treatment of conjugated π-bonds that
makes a reasonable attempt to avoid the problems of the
former procedures. The idea dates back to Pauling [21],
who established a relationship between valence and bond
distance. A new parametrization of Pauling’s equation
was obtained by O’Keeffe and Brese [22]. They pro-
posed a different constant (0.37 instead of the Pauling
value 0.35) and developed an empirical relationship be-
tween the shortening of an ideal single bond Rij and the
valence vij of a bond between the atoms i and j.

(3)

The parameters for the calculation of the single bond dis-
tances Rij are published for most elements of the periodic
system [22]. The formula for Rij takes into account bond-
shortening arising as a result of electronegativity differ-
ences between the elements.

A procedure is necessary to estimate the valences of
conjugated bonds. We identify the valence vij with the
occupation number of the conjugated bond and suggest
the following formula:

(4)

This formula describes the π-valence of a conjugated
bond vij

π depending on the number of π-electrons forming
a π-system with a central bond between the atoms i and
j. The number of π-electrons Nπ is obtained by counting
the number of neighbors of the atom i with 
π-bonds (Ni

π) and the same procedure applies for atom j
(Nj

π). This means that each π-bond of a neighbor of i 
(or j) contributes one electron to the π-system. If the
bond partners of the atoms i (or j) supply lone pairs, a
value Nπ=2 is added for each lone pair, assuming that
only one half of an electron participates in the π-system.

The weakening of the π-overlap depends on dihedral
angle, φ, and has to be taken into account for non-planar
π-systems. φ is the dihedral angle of the π-system with a
central bond between i and j. The valence of an ideal
conjugated planar π-bond is vπ

CC=1/2 (Ni
π=Nj

π=2 for a
C–C bond in benzene). For the central C–C bond be-
tween two phenyl rings in biphenyl it is Ni

π=Nj
π=3. The

torsion around the central C–C bond in biphenyl reduces
vπ

CC by cos2φ, compared with the planar case.
The equilibrium distances for all kinds of unsaturated

bonds (π-valence ≠0) are calculated according to Eqs (3)

and (4). For single bonds between elements other than
between the atoms C, N, O, S, Cl, F, and H it is also pos-
sible to obtain reasonable equilibrium bond distances by
use of Eq. (3). The default value for all missing force
constants is set proportional to the valence by multiply-
ing vπ

ij by the default force constant for π-bonds
(700 kcal mol–1 Å–1).

Angular energy

The bond angle term is associated with the deformation
of an angle from its equilibrium value. Most force fields
use harmonic potentials. In our approach we follow the
valence bond (VALBOND) concept of Landis and
Cleveland [23] for the calculation of the angular energy.
The idea is based on the connection between the strength
of hybrid orbitals and the bond angles at an atomic cen-
ter. The angular energy of three connected atoms i–k–j is
calculated from the deviation of the orbital strength
Sk(αij) of the hybrids from a maximum possible strength
Sk

max:

(5)

where Sk
max is calculated from:

(6)

where m refers to the hybridization of the central atom k
(i.e. m=3 for a sp3 hybrid). The preference of the ligands
i and j bonded to an central atom k for hybridizational
states is parameterized using weight factors kk. Overlap
integrals ∆ij between the hybrids are needed to describe
the deviation from the maximum possible orbital
strength. The actual overlap integrals ∆ij are calculated
from the bond angles and the hybridizations in the fol-
lowing way:

(7)

The overlap integrals are used to obtain the generalized
hybrid orbital strength Sk(αij):

(8)

Thus a non-harmonic potential function is obtained
which describes the dependence of the energy on the
bond angles of the system with an appreciable reduction
of the number of parameters, because only parameters
for pairs of atoms and not, as usual, for atom triplets are
needed. Using this energy function, a realistic crossing
over angular energy barriers is described.

The parameterization works for all elements of the 
p-block as described in Ref. [23], which covers nearly
the whole periodic table. For missing parameters (cova-
lent bonds are excluded for actinides or lanthanides, ele-
ments of the second, the 8th and the first main group,
with the exception of hydrogen, elements from 7th mean
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energy contribution is proportional to deviation from
planarity of a π-system:

(11)

There are three bond vectors a, b, and c from a central
sp2 hybridized atom i to the next neighbor atoms j, k, and
l (ligands). The angle β⊥ is the angle defined by the vec-
tor normal to the plane spanned by b and c and the vector
a of the π-bond. The resulting force is zero for a planar
π-system, and ≠0 for a non-planar sp2 center. The force
constant is set to the energy value needed to break a C–C
π-bond. The valence vij is calculated by use of Eq. (4),
omitting the cos2φ term (by analogy with the dihedral
angle the valence is taken for the planar case).

Van der Waals energy

Special attention is devoted to description of intermolec-
ular interactions. The van der Waals term describes the
repulsive and attractive energy contributions of non-
bonded atoms. We used the potential functions of Halg-
ren [26] for description of van der Waals interactions.
For the intramolecular interactions a Exp–6 potential is
used (Eq. 12):

(12)

and for the intermolecular interaction a 9–6 Lennard
Jones potential (Eq. 13) is used:

(13)

where εij is the well-depth and R*ij is the distance for the
minimum energy separation. The parameters and the
combination rules were taken from Halgren [26]. Some
small modifications of Halgren’s parameters were made
in the COSMOS force field (to reduce the parameter 
set) – atom types are automatically assigned, and there-
fore atom types for special structures (i.e. carbon 4-rings
refer to type 30 in Ref. [26]) are omitted. If the parame-
ters are the same (e.g. for type 3, 4, 37, 41, 57, and 60 in
Ref. [26]) only one type was used.

Some updates and extensions of the parameter set for
the COSMOS force field are possible to take into account
more recent work by Halgren on MMFF94 [5, 27] to im-
prove the description of the van der Waals interaction.

Coulomb energy

The primary goal of this new force field is a good de-
scription of the intermolecular interactions of molecular
systems by van der Waals and Coulomb potential func-
tions. The calculation of Coulomb interactions with fluc-
tuating atomic charges is possible by using a semi-em-
pirical quantum chemical method [16] based on bond po-
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group are not involved as central atoms k) the contribu-
tion to the angle energy will be zero.

Recently a paper appeared, written by Landis and
Cleveland, which describes the application of the 
VALBOND to hypervalent molecules of the p-block [24].
An extension will be implemented in the COSMOS force
field on the basis of the ideas of this work.

Dihedral energy

The term that describes the dihedral energy is associated
with the tendency to prefer certain 1–4 conformations
(e.g. cis, trans, gauche...). As usual, the periodic func-
tion:

(9)

was used to describe the dihedral energy. τ is the di-
hedral angle between the atoms k–i–j–l. The potential
(1+cos3τ) gives a typical threefold barrier in the case of
σ-bonds, and for π-systems, (1–cos2τ) yields twofold
barriers. An additional energy term for B-systems takes
into account the valence vij of the central π-bond in asso-
ciation with [17]:

(10)

The force constant of the π-bond depends on the valence
vij for the planar system k–i–j–l. The valence vij is calcu-
lated by use of Eq. (4), omitting the cos2φ term. To ob-
tain forces with a preference for the planar state of the 
π-system the constant is set proportional to the bond va-
lence for the case φ=0. Cij are correction factors, depend-
ing on the atom type. Although two-parameter matrices
are necessary (one for the force constant and one for the
corrections), an appreciable reduction of the number of
parameters was achieved, because only parameters for
atom pairs are needed and not for atom quartets, as 
is usual. All parameters were taken from Ref. [17]. Pa-
rameters are available for all central π-bonds (i–j) be-
tween the atoms C, N, O and for the 1–4 interactions be-
tween the atoms H, C, N, O, S, F, and Cl. For missing
parameters the contribution to the angular energy will 
be zero. The force constant kπ is obtained from the 
energy that is needed to break the ethene π-bond
(kπ=188.372/4 kJ mol–1) [25].

Bend energy

There are no proper dihedral angles that keep the 
π-system planar in π-bonds to terminal atoms, e.g. car-
bonyl oxygen atoms. An additional force must be intro-
duced to readjust the system into planar conformations
for improper dihedral angles. The potential applies only
if the central atom is an sp2 carbon or sp2 nitrogen. The
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larization theory (BPT) [15]. Within the framework of
the BPT for every bond that was defined within the force
field a two-center bond orbital is constructed. The polari-
ty of the bonds is described by one free empirical param-
eter dab for every bond orbital. The wave function of our
molecular system can now be written as a Slater determi-
nant made up of bond orbitals. To include polarization
we also introduce anti-bonds for every bond and add to
the ground state Slater determinant configurations that
contain bond to anti-bond excitations. The contributions
of these excited configurations are calculated from a
perturbational treatment. From this new wavefunction
including polarization, it is possible to derive atomic
charges as expectation values of projection operators.
With some simplifications, and neglecting small contri-
butions, we arrive at the following equation for the
atomic charges qa:

(14)

For every charge within the molecule we obtain an equa-
tion of the type Eq. (14) but these equations are coupled
because the charge on atom a depends on the charges qx
of all other atoms. The first term in Eq. (14) represents
the contribution of the na bonds of the first bond sphere.
The second term accounts for the polarization of the first
bond sphere by the charges qx of the other atoms. Be-
cause only excitations from bonds into their own anti-
bonds are taken into account, we have to calculate inte-
grals over the hybrids χa and χb that form the bonds of at-
om a. If an atom forms π-bonds we have to add two terms
of the same structure. To account for partial π-bonds each
bond contribution is multiplied by a bond occupation
number Nab. These occupation numbers are estimated em-
pirically by using the valence formula (Eq. 4).

For each bond two empirical parameters are needed –
the polarity of the bond dab and the change of the charge
with bond polarization Aab. These parameters are calculated
only once using atomic charges obtained from ab initio cal-
culations on a set of calibration molecules. Inserting known
charges qa and qx into Eq. (14) we obtain an over deter-
mined set of linear equations for the parameters dab and Aab.

The BPT charges depend on the three-dimensional
geometry of the molecular system. In this way, it is pos-
sible to include all mutual polarizations into the term for
the electrostatic interaction using the atomic charges ob-
tained from the BPT. Users of traditional QM-MM meth-
ods have to deal with the problem to decide which part
should be included in the QM calculations and which
part of the molecular system is treated by MM, and, fur-
ther, how the two parts should be connected or divided.
Usually the QM atoms can “feel” the polarization effects
of the MM part, but not vice versa. This means the polar-
ization effects can only act in one direction.

The BPT charge calculation is fast enough to treat the
whole system (up to 6000 atoms), but on the other hand,
options are provided to fix the charges of one part of the
system and include only their polarizing influence. For
large systems (more than 6000 atoms) this option can be
used to reduce the time taken and the memory required
by the matrix built up for charge calculation.

By introducing the BPT procedure into a force field,
there is no boundary between QM and MM part. The in-
clusion of the polarization effect over the whole system
is one of the most important advantages of the BPT
method compared with QM-MM methods for treatment
of systems of the same size.

Dealing with the calculation of large molecular sys-
tems, the number of non-bonded interactions dominates
the calculation time. Small contributions of atoms to in-
teraction energies at large distances can be neglected by
using cutoff radii. Cutoff radii can also be introduced in-
to the BPT integral calculations to reduce the number of
polarization integrals, but there are problems associated
with this simplification – the total charge is only con-
served for relatively large cutoff radii (>12 Å). If two
connected atoms “see” slightly different electrostatic sur-
roundings, the ratio of the bond polarization energies for
the connecting bond is different, leading to violation of
charge conservation.

Because atomic charges derived from ab initio calcu-
lations depend on the basis set and on the method of
population analysis, it is necessary to define atomic
charges that represent the electrostatic energy with suffi-
cient accuracy. In a previous paper [16] the parametriza-
tion of the BPT equations was performed by using atomic
charges derived from ab initio STO-3G calculations and
Mulliken population analysis. This type of charge is not
well suited for calculation of intermolecular interaction
energies. Charges fitted to ab initio calculations of elec-
trostatic potentials (ESP charges) proved to give more
realistic interaction energies, and ESP charges are there-
fore used in most modern force field parametrizations
(see, e.g., Ref. [28]). In a recent paper [29] a good corre-
lation (R=0.992) was found between BPT charges and
ESP charges. The slope of this correlation was 2.05, and
therefore all electrostatic energies (except ions) were
scaled by Cs=4.2. The electrostatic interaction energy is
calculated between all non-bonded neighbors (starting
with 1–3 interactions) directly from Coulomb’s law, and
no distance-dependent dielectric constants are used:

(15)

Parameters for BPT charge calculations are available 
for the following bond types: C–C, C–N, C–O, C–H,
C–F, C–Cl, N–H, O–H, Si–H, Si–C, Si–O, Si–Cl, and
P–O. If there is no BPT parameter for the charge calcula-
tion available, the charges are calculated from a sum of
contributions of Pauling electronegativity differ-
ences [30]:

(16)
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There could also be problems connected with this ap-
proach, because the neighboring atoms are influenced by
the differently calculated atomic charges. During exten-
sive testing no problems or only minor influences on the
interaction energies are registered.

No special term within the force field is included for
description of hydrogen bonds. If a hydrogen bond is de-
tected, the van der Waals’ term is switched off, instead
bond polarization supplies the stabilization energy of the
hydrogen bridge. The detection of a hydrogen bond fol-
lows a test routine, which looks for a distance between
an acceptor and donor of the hydrogen bond within a
range of the bond distance plus 1.6 Å for the acceptor
and donor.

Results and discussion

Internal geometries of small molecules

We used a set of 30 test molecules from Halgren [31] as
reference for our calculations. The data in Ref. [31] pro-
vide, among other information, dimer geometries and
also HF/6–31G*–optimized geometries of 44 small mol-
ecules. A five digit code is given in parentheses behind
the name of the molecule and refers to [31]:

FORMAMIDE (AM01A), TRANS–N–METHYL
ACETAMIDE (AM04A), ACETATE ION (AN02A),
PYRIDINE (AR02A), PYRROLE (AR06A), FURAN
(AR07A), THIOPHENE (AR08A), IMIDAZOLE
(AR09A), PYRIDINE N–OXIDE (AR21A), INDOLE
(AR25A), CIS–ETHANOIC ACID (CA02A), CIS–
METHYL FORMATE (CE01A), FORMALDEHYDE
(CO01A), ACETONE (CO04A), FLUOROMETHANE
(HL01A), FORMALDEHYDEIMINE (IM03A), N–
METHYLAMINE CATION (NC02A), GUANIDINE
CATION (NC06A), IMIDAZOLE CATION (NC12A),
METHYLAMINE (NH01A), AMMONIA (NH10A),
ANILINE, N–PUCKERED (NH14A), METHYL-
ETHYLAMINE OXIDE, CNCC ANTI (NH20A),
METHANOL (OH01A), PHENOL (OH08A), WATER
(OH09A), DIMETHYL ETHER (OR06A), HYDRO-
GEN SULFIDE (SR01A), DIMETHYL SULFIDE
(SR03A) and METHYL DISULFIDE (SR06A).

In addition pyrazole was included for structural com-
parison. The geometry data of ab initio QCISD/6–31G**
calculations were taken from Ref. [32]. We performed
force field optimizations with COSMOS and MSI
CHARMm (available over Quanta 97 [33]) for compari-
son. All calculated data were compared with proved ex-
perimental bond length and bond angles from three
sources [34]. A complete table of the data (experimental,
ab initio, COSMOS and CHARMm) is available on re-
quest from the authors. Linear correlations were estimat-
ed for calculated and experimental bond length and bond
angle data; the linear correlations between experimental
bond lengths and bond angles and values calculated by
use of the COSMOS force field, for all 31 test mole-
cules, are shown in Fig. 1.
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A summary of the correlation results between experi-
mental data and optimized geometries from different cal-
culations (ab initio, CHARMM, and COSMOS) are 
given in Table 1. Results from linear correlation of bond
length and bond angle data from force field calculations
(COSMOS and CHARMm) with data from ab initio 
calculation (from Halgren [31]) are shown in Table 2.
Tables 1 and 2 also list RMS values for the same data
pairs. For visual comparison the linear fit through zero
of bond length and bond angles from the COSMOS and
ab initio calculations, for all 31 test molecules, are
shown in Fig. 2. 

As a result of this investigation, we can say that the
COSMOS force field can satisfactorily reproduce bond
lengths and bond angles. There is no doubt that ab initio
calculations are able to reproduce the experimental val-
ues of small molecules at best (also with moderate basis
sets). For our test set of 31 molecules we obtained RMS
values of 0.01 Å for the bond lengths and 1.4° for the

Fig. 1 Correlations of experimental bond lengths and the bond an-
gles with values calculated by use of COSMOS for all 31 test mol-
ecules
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bond angles. The force field calculations yield, as ex-
pected, larger deviations from the experimental values
with 0.03 Å (COSMOS) and 0.02 Å (CHARMm) for the
bond lengths and 3.7° (COSMOS) and 2.7° (CHARMm)
for the bond angles, compared with ab initio values.

Fourteen structures were selected from Halgren’s
set [31] to calculate the overall RMS deviations (for all
involved geometry parameters bond lengths, bond angles
and dihedral angles) of the force field-optimized struc-
tures with regard to the ab initio-optimized structures
and the experimental data. The selection was made with
regard to the availability of proved experimental data
from few sources as possible [34]. The following mole-
cules were investigated FORMAMIDE, N-METHYL-
ACETAMIDE TRANS, PYRIDINE, THIOPHENE, 
IMIDAZOLE, CIS-ETHANOIC ACID, CIS-METHYL
FORMATE, METHYLAMINE, AMMONIA, ANILINE,
METHANOL, WATER, DIMETHYL ETHER, HYDRO-
GEN SULFIDE.

The overall RMS value for the COSMOS-optimized
structures was 0.084 and 0.053 for the CHARMm opti-
mized molecules. If intramolecular geometries are re-
quired, COSMOS cannot compete with more elaborate
programs, e.g. CHARMm. For all cases tested the RMS

deviations were larger for the COSMOS values than for
the values calculated by CHARMm (force field com-
pared with experimental data and force field compared
with ab initio data). Force fields such as CHARM con-
tain many more parameters than COSMOS and many ad-
ditional terms. It is, nevertheless, impressive that the
simple valence formulas (Eqs 3 and 4) reproduce the
bond length of π-systems in such a satisfactory way. This
shows that the new concept of separated handling of po-
tential terms with implementation of fully polarizable
atomic charges is working. It is, therefore, easy to fix the
sources of deviations and tune the parametrization when
needed for COSMOS.

In addition to this investigation, we considered the
challenge of Halgren [35] to reproduce the conformatio-
nal energies of cyclohexanol and cyclopentanol (repre-
sentative drawings are shown elsewhere [35]). In the
COSMOS force field the hydrogen charges (qCH) are be-
tween 0.063 and 0.064 for both molecules. The relative

Table 1 Summary of correlations between experimental bond
lengths and bond angles and values calculated by use of different
methods. B refers to the slope of the linear fit through zero, R is
the correlation coefficient and SD is the standard deviation

Parameter ab initio COSMOS MSI CHARMm

Number of data pairs 101 106 106
RMS (distances) in Å 0.010 0.029 0.015
B (distances) 0.99242 1.00842 0.99675
Error of B 8.64235E–4 0.00221 0.00116
R 0.99878 0.99012 0.99721
SD 0.01098 0.02869 0.01507
Number of data pairs 85 94 94
RMS (angles) in ° 1.367 3.726 2.735
B (angles) 1.00188 1.00187 1.00337
Error of B 0.00131 0.00322 0.00248
R 0.98587 0.91276 0.94192
SD 1.37167 3.72521 2.74136

Table 2 Summary of correlations between ab initio calculated da-
ta and bond lengths and bond angles calculated by use of different
force field methods

Parameter COSMOS MSI CHARMM

Number of data pairs 140 140
RMS (distances) in Å 0.336 0.205
B (distances) 1.01774 1.00432
Error of B 0.00228 0.00139
R 0.98586 0.99466
SD 0.03391 0.02069
Number of data pairs 121 121
RMS (angles) in ° 3.103 2.217
B (angles) 0.99927 0.99906
Error of B 0.00247 0.00176
R 0.93499 0.95971
SD 3.10310 2.21555

Fig. 2 Comparison of the linear fit through zero for bond lengths
and bond angles calculated by use of COSMOS and by ab initio
calculations for all 31 test molecules
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sequence of energies of four different conformers of cy-
clohexanol was reproduced with respect to the ab initio
values from MP4SDQ/TZP calculations but the absolute
values of the differences are overestimated. The relative
position of the ab initio energies for cyclopentanol could
not be reproduced by COSMOS. The force field always
yields a lower energy for the equatorial conformers than
for an axial bonded hydroxyl group, but this is in accor-
dance with experimental values for cyclohexanol [36].
The cited value was measured for 4-t-butylcyclohexanol
epimers equilibrated via Raney nickel catalysis.

Intermolecular interactions of small molecules

Correct reproduction of proton donor–acceptor behavior
is essential for description of molecular interactions.
This task is not easily solved by force fields, as shown
by Halgren [35], and some force fields fail to reproduce
the correct donor–acceptor behavior.

Molecular systems with high polarization effects were
selected for calculation of intermolecular interactions. We
started with 26 small hydrogen-bonded systems (out of a
set of 66 homogeneous and heterogeneous dimers) also
available in Ref. [31]. The resulting interaction energies
and the geometry parameters of the hydrogen bonds from
ab initio [31] and COSMOS calculations are shown in
Table 3. Representative drawings are given elsewhere [5].

In his work [35] Halgren uses scaled interaction 
energies and distances (SQM) for comparison. In 
COSMOS force field calculations, fully polarizable
charges are always used. The COSMOS results compare
better with the non-scaled ab initio data (QM). Both sets
of parameters (QM and SQM) are shown in Table 3 for
comparison. The SQM data were taken from Ref. [35]
and the QM values were calculated from Ref. [31]. The
names of the dimer structures (column 2) follow
Ref. [35] and the codes of the dimers and monomers
(columns 3–5) are the same as in Ref. [31]. The inter
action energies are calculated according to the scheme:
interaction energy=energy(dimer)–{energy(monomer 1)+ 
energy(monomer 2)}.

Water often plays a key role in the parametrization of
force fields. The interaction energies of the pairs water
and methanol (rows 1–4) are similar to each other. The
energies are in the same order as the ab initio values. Al-
though the relative sequence of the four ab initio interac-
tion energies is not correctly reproduced, the COSMOS-
calculated donor–acceptor behavior (rows 2 and 3) is the
same as that found experimentally for the interaction be-
tween water and methanol. MSI CHARMm and Amber
failed here [35].

The stabilizing energies of the dimers are overesti-
mated relative to results from ab initio calculations
(QM). The value for the water dimer lies between the
scaled ab initio data (SQM), which reproduces the exper-
imental value in the condensed phase, and the non-scaled
ab initio values (QM), which represent the interaction
energy of two isolated molecule in a vacuum. The 

COSMOS interaction energy of –5.9 kcal mol–1 is lower
than the stabilizing energy of the successfully used water
models TIP3P [37] and SPC [38], which is necessary to
fit the heat of vaporization (–6.5 kcal mol–1) and other
condensed-phase properties. However, the COSMOS
value is in good agreement with the non-scaled ab initio
value (–5.6 kcal mol–1), which represents the interaction
of two isolated water molecules in the gas phase.

The O...O distances (rows 1–4) behave similarly to
the energies – the COSMOS value again lies between the
SQM and QM data. The COSMOS-calculated distance
for the water dimer (2.78 Å) is shorter than the compara-
ble non-scaled ab initio value (2.97 Å), but it is larger
than the value that the above-cited water models use to
reproduce the density and other properties of liquid wa-
ter (2.74–2.75 Å).

For the water–methanol interaction pairs the H...O
distances are approximately 0.2 Å shorter than the QM
values. The O-H...O angles deviate further (approx. 5°)
from the QM data.

Calculation for the test dimers produced the correct
donor–acceptor behavior for the water–methanol pair
(rows 1–4). Correct donor–acceptor behavior also could
be reproduced for phenol (rows 5 and 6), methyl acetate
(rows 8 and 9), N-methylamide (rows 10 and 11), imid-
azole (16 and 17), ammonia, pyridine, and thiophene
(rows 18–20) and their interaction with water, where 
other force fields failed (see Ref. [35]).

The interaction energies and geometries of the cyclic
ethanoic acid and formamide dimers deviate substantial-
ly from the ab initio data. For ethanoic acid the distances
(O...O and O...H) are much too long, and connected with
this, the interaction energies are much too small. The do-
nor–acceptor behavior is, nevertheless, reproduced cor-
rectly for formamide (rows 12 and 13). A re-para-
metrization of conjugated C=O bonds (Eq. 3) could pos-
sibly yield improved results.

Differences among the interaction energies of the am-
monia–water dimers (rows 14 and 15) are relatively
small and the magnitudes are of the same order as ab in-
itio results. Also the geometries obtained from the differ-
ent methods are in good agreement. Unfortunately, 
COSMOS stabilizes the wrong dimer (linear more stable
than cyclic) compared with the ab initio calculations, 
but the difference between the dimers is very small
(0.7 kcal mol–1).

It seems very surprising to us that the interaction en-
ergies and geometries of sulfur-containing compounds
also deviate only slightly from results from the ab initio
calculations, because there are no parameters for the
BPT charge calculation. In the BPT approach the atomic
charge is a sum of contributions from all the bonds of
that atom. The missing contributions, because of missing
parameters, came from a simple method of calculating
the atomic charges–charges derived from electronegativ-
ities. Deviations of the Coulomb energy and of the ge-
ometries should be expected.

The interaction energy of the thiophene–water dimer
is overestimated relative to the ab initio values, but the
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interaction geometries calculated by different methods
agree very well and the donor–acceptor interactions of
ammonia and pyridine with water (rows 18–20) are cor-
rectly reproduced.

The interaction energies of hydrogen sulfide pairs and
dimethyl sulfide pairs with water (rows 23–26) are of the
same order as the ab initio values. Because of the above
mentioned problems, reproduction of the relative interac-
tion energies was not expected. Deviations are larger for
the hydrogen sulfide dimer (row 25) than for the other
pairs. A possible explanation is that for this dimer all
charges were derived from electronegativities, which in-
fluences the Coulomb energy, and the Coulomb energy is
almost always the largest part of the interaction energy.

For amine-N-oxides (rows 21 and 22) two different
species are possible – a zwitterion with a high dipole
moment on the one hand and an uncharged molecule
with a lower dipole moment on the other hand. The cal-
culations of the dimers yield much better results for the
molecules with the lower dipole moment and for the
monomers with the lower dipole moment. The interac-
tion energies are similar to results from ab initio calcula-
tions and the relative stabilization energies could be re-
produced.

COSMOS reproduced the correct (experimental) do-
nor–acceptor behavior in all the cases tested, with one
exception – the interactions of hydrogen sulfide with
partners. The error can be explained by the missing BPT
charge parameterization of the sulfur bond types. The re-
production of the experimental donor–acceptor behavior
is remarkable compared with results from other force
fields, even if deviations from the ab initio data
(≥2 kcal mol–1) are larger for the COSMOS interaction
energies.

Intermolecular interactions of DNA and RNA base pairs

The interaction energies of DNA/RNA base pairs are of
interest for molecular genetics. We are aware that a large
part of the interaction energy within the DNA and RNA
is determined by the stacking of the base pairs. In this
work we concentrated on the interaction energies of sin-
gle DNA/RNA base pairs as a first step. DNA and RNA
chains are highly charged molecular structures. It has
been shown that the results of force field calculations
can be highly dependent on the charge model (see, e.g.,
Ref. [39]).

Table 4 and Fig. 3 show the interaction energies for
selected DNA/RNA base pairs from experiment and
from different methods of calculation. The selection was
made by the availability of proven experimental data
from one source [40]. The following base pairs (shown
in Fig. 4) were selected: guanine–cytosine Watson–
Crick-paired (GCWC), cytosine–cytosine (CC), ade-
nine–uracil (AU), adenine–thymine Watson–Crick-paired
(ATWC), uracil–uracil (UU), and thymine–thymine
(TT). 

It should be noted that the experiments were per-
formed with methylated bases. The methylations were
made at those carbon atoms where the sugar component
of the DNA/RNA chain is usually bonded. Methylated
DNA/RNA bases were used in ab initio calculations by
Barsky [41] (BLYP/6–31 ++ G**) and in the COSMOS
calculations. The ab initio MP2/6–31G*(0.25) with cor-
rection of the basis set superposition error (BSSE) and
force field calculations (CHARMm and CVFF) from
Šponer [42] were performed with non-methylated bases.
The ab initio calculations of the base pairs from Šponer
were made with fixed monomer geometries, and only the
interaction parameters were determined by optimization.

Table 4 Intermolecular interaction energies (kcal mol–1) of DNA/RNA base pairs from different sources

Base pairs Exp. [40] ab initio BLYP [41] CHARMm 23 [42] ab initio MP2 [42] CVFF [42] COSMOS

GCWC 21 27 25.5 25.8 16.6 13.4
CC 16 x 18.1 18.8 10.5 10.8
AUa 14.5 13.1 x x x 12.8
ATWC 13 12.8 13.6 12.4 8.3 12.3
UU2b 9.5 x x 10.8 x 6.1
TT2 9 x 11.2 10.2 7.7 6.7

a Geometry analogous to ATWC b The ab initio values are, in this case, from Ref. [42]

Fig. 3 Comparison of experimental and calculated interaction en-
ergies for DNA/RNA base pairs. exp: I.K. Yanson et al. [40];
BLYP: D. Barsky, ab initio B3LYP/6–31++G** personal commu-
nication; CVFF, CHARMm: P. Hozba et al. [42]; MP2: M.
Kratochvíl et al. (MP2/6–31G*) [42]; COSMOS: this work
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The ab initio calculations of Barsky were made without
restrictions [41]. Since we found no proven experimental
data relating to the CC, UU, and TT pairs, a problem ap-
pears – because the purine and pyrimidine bases have
more than one donor and acceptor site, several variations
of base-pairing are possible. For non-methylated bases
there are even more possibilities. The only biologically
relevant cases are those which are also possible if the
molecule is methylated. There is only one possibility for
CC. For TT and UU the biologically relevant pairs with

the lowest energy were chosen. The names of the base
pairs are the same as in Refs [40] and [42]. Representa-
tive drawings are given elsewhere [42, 43].

COSMOS is able to reproduce the relative interaction
energies satisfactorily, with the exception of the CC pair.
The stabilization energy of this pair is much too small
compared with the experimental and ab initio values.
Within the COSMOS calculations the stabilization ener-
gy is largest for the GCWC pair, but this energy is too
small compared with the ab initio values. As expected,

Table 5 Comparison of COSMOS-optimized geometries of DNA/RNA base pairs with ab initio calculations and experimental data

Base pairs Inter-acting X...Z distance ( Å) H...Z distance ( Å) X–H...Z angle (°)
atoms
X–H...Z Exp. Exp. ab initio ab initio COSMOS ab initio ab initio COSMOS ab initio ab initio COSMOS

[44] [45] [41] [43] [41] [43] [41] [43]

GCWC O6...H4-N4 2.91 2.98 2.79 2.92 3.15 1.75 1.91 2.13 179.5 177.0 166.5
N1-H1...N3 2.95 2.95 2.94 3.04 3.12 1.90 2.03 2.09 178.1 176.1 172.4
N2-H2...O2 2.86 3.03 2.92 3.02 3.00 1.90 2.02 1.97 179.7 178.1 177.6

CC N4-H4...N3 x x x 2.92 2.89 x 1.89 1.85 x 173.6 176.5
N3...H4-N4 2.92 2.96 1.89 1.93 173.6 173.9

AUa N6-H6...O4 2.95 x 2.93 x 2.97 1.91 x 1.94 174.8 x 172.3
N1...H3-N3 2.82 2.84 2.86 1.79 1.83 179.6 172.9

ATWC N6-H6...O4 x 3.06 2.93 3.09 3.10 1.91 2.09 2.09 174.5 172.7 162.3
N1...H3-N3 2.94 2.84 2.99 2.88 1.80 1.97 1.85 179.7 178.8 173.3

UU2b N3-H3...O2 x x x 2.97 2.82 x 1.98 1.83 x 167.1 158.7
O2...N3-H3 2.97 2.82 1.98 1.83 167.1 158.5

TT2 N3-H3...O2 x x x 2.98 2.75 x 1.99 1.76 x 167.4 157.8
O2...N3-H3 2.98 2.76 1.99 1.78 167.4 158.2

a Geometry analogous to ATWC b The ab initio values are, in this case, from Ref. [42]

Fig. 4 DNA/RNA base pairs
(for energies see Table 4)
1. guanine–cytosine 
Watson–Crick (GCWC),
2. cytosine–cytosine (CC),
3. adenine–uracil (AU),
4. adenine–thymine 
Watson–Crick (ATWC),
5. uracil–uracil (UU2),
6. thymine–thymine (TT2)



UU2 and TT2 have similar interaction energies. This is
also reproduced by COSMOS, although the relative 
sequence of the stabilization energies is changed. In gen-
eral, the COSMOS interaction energies are in the same
range as the experimental values. Table 5 shows the
length and angles of the hydrogen bonds from experi-
ments (two different sources) and from different calcula-
tions.

Some trends in the results for the bond geometries are
analogous with the interaction energies. With the excep-
tion of the CC pair the interaction geometries are quite
well reproduced by COSMOS. Again is should be noted
that the distances for GCWC deviate more from the ex-
perimental and ab initio values. One possible reason for
deviation of the interaction energies are the too large dis-
tances of the interaction geometries for the CC and
GCWC pair. Deviations of 0.2 Å in the X...Z distances
from the ab initio values also occur in the TT2 structure,
where again disagreement between the relative sequenc-
es of stabilization energies was found.

Differences between intermolecular hydrogen bridge
distances obtained from ab initio calculations (geometry
optimization basis set) and the COSMOS force field are,
on average, approximately 0.06 Å. The largest differ-
ences are estimated for the GCWC and TT2 pairs. Dif-
ferences between the angles (X-H...Z) of the intermolec-
ular hydrogen bridges are relatively large – approximate-
ly 6° on average. This problem seems to be connected
with the description of the hydrogen bond (only with the
Coulomb and van der Waals potential) because no term
in the potential controls the dependence of the strength
of the hydrogen bond on the X-H....Z angle. Some modi-
fications in that direction could substantially improve
calculation of the interaction energies. On the other
hand, the ab initio results are not at the limit of accuracy,
because correlational corrections have a large influence
on intermolecular interactions. Uncorrelated HF calcula-
tions disregard van der Waals attractions and should,
therefore, give slightly incorrect distances and interac-
tion energies.

Conclusions

The COSMOS force field is a powerful tool for calculat-
ing non-bonded intra- and intermolecular interactions.
The differences between calculated and experimental
bond lengths are approximately 0.03 Å; for bond angles
the difference is ca. 3.5°. The main advantage of the
COSMOS force field lies in description of the intermo-
lecular interactions of polar systems. Differences be-
tween calculated and experimental interatomic distances
(X...Z) for a polar system (X-H...Z) are approximately
0.2 Å. The interaction energies reproduce the correct ex-
perimentally determined donor–acceptor behavior for
most of the examples tested.

The core of the new force field is semi-empirical
charge calculation using bond-polarization theory. The
bond polarization theory provides a fast method of calcu-

lating the atomic charges. The parameters are included
for C–C, C–N, C–O, and P–O bonds of sp3 and sp2 hy-
brids and for the C–H, C–F, C–Cl, N–H, O–H, Si–H,
Si–C, Si–O, Si–Cl, Zn–O, and Zn–N bonds of sp3 hy-
brids. The model provides a good approach for inclusion
of polarization effects of charged centers in a molecular
system, and the influence of a solution or a lattice on a
molecular system, in the calculation of the Coulomb
term. The size of the molecular system studied is limited
solely by CPU time. A typical calculation for a crystal
lattice of 2000–3000 atoms, including net atomic
charges, took only 2 min on a PC [46].
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